Showing posts with label histamine. Show all posts
Showing posts with label histamine. Show all posts

Wednesday, June 12, 2013

Scientists identify two classes of itch neuron by turning them off separately

For several years it’s been known that itch and pain signals from the skin are carried by different types of neuron to the spinal cord and brain. But there's more than one kind of itch. Scientists have now clearly identified at least two types of itch neuron—one that responds to histamine and a second type that responds to other itch-provoking molecules.

These results could lead to drugs that selectively shut down chronic itch in eczema patients but leave the rest of the sensory system intact.

Some itch is caused by histamine, which triggers an itch signal in certain neurons. But histamine is not the main source of itch for eczema patients. In eczema, most itch has its origins in allergy, when mast cells release “pruritogens” that bind to receptors on itch neurons.

For a long time it was an open question whether histamine and the other pruritogens were triggering itch signals in the same neurons, or different types that scientists could distinguish experimentally.

In late May, researchers led by Alexander Binshtok at the Hebrew University in Jerusalem and Clifford Woolf at Harvard Medical School reported results that clearly showed histamine and non-histamine itch signals are carried by different neurons. The research was published in the journal Nature Neuroscience.

The scientists used a novel two-stage experimental technique to shut the two neuron types down independently. Perhaps someday a similar technique might be embodied in an anti-itch therapy.

What they did was to exploit the fact that when neurons detect histamine and pruritogens, large-diameter channels open in the neurons to let in ions (charged particles) that initiate the electrochemical itch signal, which relies on sodium and potassium.

First, the scientists treated mice with either histamine or a non-histamine pruritogen. At the same time they injected the mice with QX-314, a molecule that blocks sodium ion channels (which are very small-diameter). The large-bore ion channels opened to let in sodium, potassium, and QX-314.

Thereafter, those neurons were unable to fire itch signals, because their sodium channels were blocked by QX-314. The scientists showed that when they dosed the mice with histamine and QX-314, one group of neurons didn’t work (and the mice didn't scratch). When they dosed the mice with other pruritogens and QX-314, the histamine itch neurons worked, but other subsets of neurons were shut off (and the mice didn't scratch).

The scientists’ technique is not directly translatable to therapy, because this study was conducted in mice and involved injection, which is not practical for daily use. But the molecular action they were studying takes place in the upper skin layers, and one could imagine that someday a cream or ointment might be developed that would include two components: one to open large-bore ion channels that detect pruritogens, and another to block the electrochemical signals in those neurons.

Hat tip to Ryan.

PS in a recent post I discussed the difference between TRPV1 ion channels, required for histamine itch, and TRPA1 channels, required for chronic itch. These are the "large-bore" channels mentioned above. Trivia: To trigger a histamine itch signal in a neuron, histamine must activate both TRPV1 and the H1 histamine receptor. To trigger a non-histamine itch signal in a neuron, a pruritogen must activate both TRPA1 and a special pruritogen receptor--"MrgprC11" in the case of dry skin.

Tuesday, June 4, 2013

Key to chronic eczema itch may lie in special ion channel

Recently scientists reported the discovery of an “itch molecule” (Nppb)  responsible for conveying the itch signal across the synapse from sensory neurons in the skin to neurons in the dorsal horn of the spinal cord.

The media made a great deal of this study, which laid out a substantial model for how we feel itch.

Something I hadn’t noticed, though, was that the Science study considered only a subset of neurons involved in sensing itch—those that are activated by histamine. These neurons, at the itch-sensing end, have a type of ion channel called “TRPV1” that detects histamine and other substances, or “pruritogens,” that induce itch.

An ion channel is a kind of gate that opens when a key--such as a histamine molecule--binds to it. The open gate lets in sodium or potassium ions. When this happens to ion channels in a neuron, the neuron sends an electrical pulse down its length, transmitting information, such as a sensation of itch.

But there are other triggers for itch besides histamine. “Histamine-independent” itch is particularly important in the chronic itch experienced by eczema patients. (And that's why antihistamines don't do us any good.)

Histamine-independent itch is transmitted by neurons that possess TRPA1 ion channels. A new study, published in the Journal of Neuroscience, shows that mice only feel chronic itch if they have neurons expressing TRPA1 channels. Strikingly, the scientists show that knocking out TRPV1 channels (the histamine-dependent kind) does not affect the ability of mice to feel chronic itch.

As a model of chronic itch, the researchers shaved the cheeks of lab mice and exposed the skin to drying chemicals over a period of a few days. The mice scratched their cheeks and developed classic signs of dry, itchy skin--unless their TRPA1 channels had either been genetically deleted or inhibited by a drug,in which cases they hardly scratched at all.

The researchers were also interested in whether the itch-scratch cycle affected the sensation of itch. If you don’t scratch an itch, does it get better or worse? The answer appears to be that if you (or, by proxy, a lab mouse) have an itch on your back that you can only scratch by rubbing it against the wall, it may torment you, but when measured by objective standards, skin that you don’t scratch ends up in better shape.

We can draw two practical conclusions from this work, which was led by Diana Bautista at UC Berkeley: that blocking TRPA1 channels with a drug in cream or ointment form could be a potential solution to the chronic itch of eczema; and that it really does appear that if you can break the itch-scratch cycle, your skin will be better off.

Now, we all know how difficult it is to stop scratching. It’s not as easy as saying that you’ll stop. But this type of research certainly highlights the positive feedback of habit-reversal, which uses psychiatric techniques to reduce habitual scratching. Scratch less…and you’ll feel less itchy.

I do have one question: does the molecule Nppb, reported in the Science paper two weeks ago, transmit chronic itch signals as well as histamine-induced itch? If so, it is still a valuable target for further research into eczema therapies.